skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dong, Ziqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 22, 2026
  2. Free, publicly-accessible full text available April 20, 2026
  3. Free, publicly-accessible full text available April 20, 2026
  4. Free, publicly-accessible full text available December 16, 2025
  5. The increasing adoption of electric vehicles (EVs) by the general population creates an opportunity to deploy the energy storage capability of EVs for performing peak energy shaving in their households and ultimately in their neighborhood grid during surging demand. However, the impact of the adoption rate in a neighborhood might be counterbalanced by the energy demand of EVs during off-peak hours. Therefore, achieving optimal peak energy shaving is a product of a sensitive balancing process that depends on the EV adoption rate. In this paper, we propose EOS, an agent-based simulation model, to represent independent household energy usage and estimate the real-time neighborhood energy consumption and peak shaving energy amount of a neighborhood. This study uses Residential Energy Consumption Survey (RECS) and the American Time Use Survey (ATUS) data to model realistic real-time household energy use. We evaluate the impact of the EV adoption rates of a neighborhood on performing energy peak shaving during sudden energy surges. Our findings reveal these trade-offs and, specifically, a reduction of up to 30% of the peak neighborhood energy usage for the optimal neighborhood EV adoption rate in a 1089 household neighborhood. 
    more » « less
  6. Blockchain has emerged as a solution for ensuring accurate and truthful environmental variable monitoring needed for the management of pollutants and natural resources. The immutability property of blockchain helps protect the measured data on pollution and natural resources to enable truthful reporting and effective management and control of polluting agents. However, specifics on what to measure, how to use blockchain, and highlighting which blockchain frameworks have been adopted need to be explored to fill the research gaps. Therefore, we review existing works on the use of blockchain for monitoring and managing environmental variables in this paper. Specifically, we examine existing blockchain applications on greenhouse gas emissions, solid and plastic waste, food waste, food security, water usage, and the circular economy and identify what motivates the adoption of blockchain, features sought, used blockchain frameworks and consensus algorithms, and the adopted supporting technologies to complement data sensing and reporting. We conclude the review by identifying practical works that provide implementation details for rapid adoption and remaining challenges that merit future research. 
    more » « less
  7. Nitrate (NO3) pollution in groundwater, caused by various factors both natural and synthetic, contributes to the decline of human health and well-being. Current techniques used for nitrate detection include spectroscopic, electrochemical, chromatography, and capillary electrophoresis. It is highly desired to develop a simple cost-effective alternative to these complex methods for nitrate detection. Therefore, a real-time poly (3,4-ethylenedioxythiophene) (PEDOT)-based sensor for nitrate ion detection via electrical property change is introduced in this study. Vapor phase polymerization (VPP) is used to create a polymer thin film. Variations in specific parameters during the process are tested and compared to develop new insights into PEDOT sensitivity towards nitrate ions. Through this study, the optimal fabrication parameters that produce a sensor with the highest sensitivity toward nitrate ions are determined. With the optimized parameters, the electrical resistance response of the sensor to 1000 ppm nitrate solution is 41.79%. Furthermore, the sensors can detect nitrate ranging from 1 ppm to 1000 ppm. The proposed sensor demonstrates excellent potential to detect the overabundance of nitrate ions in aqueous solutions in real time. 
    more » « less